Report Available! Experiment and improve reinforcement learning algorithms to enhance anomalous network behaviour detection

Cybersecurity is a significant research area because all of the operations based on government, military, commercial, financial and civilians gather, process, transfer and store tremendous volume of data on computers and others. Cyber-attacks have imposed increasing threats and damages on our modern society at all levels. Network Intrusion Detection System (NIDS) is one of the major techniques in preventing cyber-attacks occurred in network traffic. Over the past decade, a lot of research work has been conducted to explore the capabilities of artificial intelligence (AI) methods in developing NIDS solutions. The previous studies suggested that AI algorithms have promising potentials in developing effective solutions to detect the increasing attacks.

TeleMARS R&D team commits to advance AI-based methods, explore realistic approaches of deploying the research outcomes in real network environment, and support on-going research in wider community to achieve long term sustainable development. The key objectives of this project were to:

  • contribute to the development of NIDS;
  • contribute to research community in the subject of anomaly detection;
  • establish a practical collaboration framework to enable scientists and IT professionals from diverse background to work together to continuously contribute to NIDS research;
  • test and prove TeleMARS operation and technical frameworks, and the team capabilities; and
  • inspire and enable the participation of broader research community in cybersecurity domain supporting gender equality and inclusion

This project started in September 2020 and finalized in June 2021. The main activities included:

  • Literature review and project design.
  • Data analysis and preparation.
  • Anomaly detection model development using Machine Learning methods including Reinforcement Learning method.
  • Model experimentation.
  • Established evaluation pipelines to simulate real application environment.
  • Model capability evaluation applying different datasets.
  • Implementation of a collaboration framework supporting the research activities conducted by researchers and professionals with various backgrounds.

The final technical report is available for review here.

Report available! Software Defined Networks based Security Architecture for IoT Infrastructures

Prof. Vijay Varadharajan from the Faculty of Engineering and Built Environment at The University of Newcastle has completed the report for one of the grants that was allocated for implementation in 2018, titled “Software Defined Networks based Security Architecture for IoT Infrastructures”.

The project developed fine granular security policies and a lightweight security protocol to authenticate IoT devices and authorise them to access services in network infrastructure in a secure manner. The project involved three stages:

  • In the first stage, the project team conducted a detailed study of security attacks on IoT infrastructures and the different security solutions that currently exist to counteract the various types of attacks. Then, analysed the pros and cons of the existing solutions, and developed security requirements that need to be addressed in designing security architecture for IoT Applications.
  • As part of second stage, the team developed a lightweight authentication protocol based on a novel public key encryption scheme. The proposed protocol achieved a balance between the efficiency and communication cost without sacrificing security.
  • In the third stage, the team proposed a SDN based security architecture for IoT systems. Their security architecture allowed specification of fine granular access policy constraints on communications between end users, devices and services in a distributed environment. A novel feature of the proposed architecture is its ability to specify path based security policies, which is a distinct advantage in SDNs.

The report is publicly available here:

https://isif.asia/software-defined-networks-based-security-architecture-for-iot-infrastructures/

Congratulations to the ISIF Asia Grantees for 2019

This year ISIF Asia selected 6 organizations in the Asia Pacific to receive USD 20,000 to support research and development of Internet technologies for the benefit of the region. The ideas they submitted for the 2019 call for proposals highlight the main technical, operational and development issues that concern the Asia Pacific Internet community and concrete solutions to address them. This year’s funding round marks our 11th anniversary of operation in the Asia Pacific, and a total of USD 120,000 was allocated.

The application process this year, as the topics for our grants get more specialized, attracted highly relevant proposals and highlighted how a variety of stakeholders are working towards the development of the Internet. We see those as great indicators about the relevance of ISIF Asia as a mechanism to support the development of the Internet across the region. We received 70 proposals from 17 economies.

The funding will be distributed among organizations representing Private Sector (1) and Academia (5) across 5 economies: Australia, India, Indonesia, Malaysia and New Zealand.

We are confident the outcomes of their work will continue to support an open, stable, and secure Internet that serves the needs of the people in our region.

2019 Network Operations Research Grants

  • Modelling and identifying IP address space fragmentation pressure points. Curtin University. Australia. USD 20,000
  • Honeynet Threat Sharing Platform. Swiss German University (SGU), Badan Siber & Sandi Negara (BSSN) and Indonesia Honeynet Project (IHP). Indonesia. USD 20,000
  • Implementation and Utilites of RDAP for wider usability among Internet Stakeholders. University of Malaya. Malaysia. USD 20,000
  • Network coding over satellite links: scheduling redundancy for better goodput. The University of Auckland. New Zealand. USD 20,000

2019 I4D Powering Internet Infrastructure Grants

  • Telemetering the telltale signs of power issues of wireless internet relays. Rural Broadband – AirJaldi. India. USD 20,000
  • Network Remote Powering through Quasi-Passive Optical Nodes. Royal Melbourne Institute of Technology (RMIT University). Australia. USD 20,000

The 2019 I4D Award was not granted this year, instead one additional grant under the Network Operations Research was allocated.

The APNIC Foundation and ISIF Asia thanks all the applicants for sharing their ideas with us, the Selection Committees members for their hard work to arrive to this great outcome, and to APNIC for their generous funding contributions for 2019.